Article ID Journal Published Year Pages File Type
662676 International Journal of Heat and Mass Transfer 2008 10 Pages PDF
Abstract

The pool nucleate boiling heat transfer experiments of water (H2O) based and alcohol (C2H5OH) based nanofluids and nanoparticles-suspensions on the plain heated copper surface were carried out. The study was focused on the sorption and agglutination phenomenon of nanofluids on a heated surface. The nanofluids consisted of the base liquid, the nanoparticles and the surfactant. The nanoparticles-suspensions consisted of the base liquid and nanoparticles. The both liquids of water and alcohol and both nanoparticles of CuO and SiO2 were used. The surfactant was sodium dodecyl benzene sulphate (SDBS). The experimental results show that for nanofluids, the agglutination phenomenon occurred on the heated surface when the wall temperature was over 112 °C and steady nucleated boiling experiment could not be carried out. The reason was that an unsteady porous agglutination layer was formed on the heated surface. However, for nanoparticles-suspensions, no agglutination phenomenon occurred on the heating surface and the steady boiling could be carried out in the whole nucleate boiling region. For the both of alcohol based nanofluids and nano-suspensions, no agglutination phenomenon occurred on the heating surface and steady nucleate boiling experiment could be carried out in the whole nucleate boiling region whose wall temperature did not exceed 112 °C. The boiling heat transfer characteristics of the nanofluids and nanoparticles-suspensions are somewhat poor compared with that of the base fluids, since the decrease of the active nucleate cavities on the heating surface with a very thin nanoparticles sorption layer. The very thin nanoparticles sorption layer also caused a decrease in the solid–liquid contact angle on the heating surface which leaded to an increase of the critical heat flux (CHF).

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,