Article ID Journal Published Year Pages File Type
6630320 Fuel 2018 17 Pages PDF
Abstract
Engine experiments and computational fluid dynamics modeling (CFD) were used to isolate and understand the role of premixed, main, and post-injections in soot mitigation and load extension for high-load GCI operation. Results showed that for all the three injection strategies soot emissions increased with increasing load. For the post-injection cases, soot emissions increased as the dwell time between the main and the post-injection increased. However, adding load through post-injections resulted in higher soot emissions compared to the baseline injection strategy irrespective of the SOI timing of the post-injection. Premixing a portion of the main injection fuel reduced the soot emissions for the post-injection cases, but they remained higher compared to the baseline injection strategy. The CFD modeling showed that the post-injection cases resulted in lower soot formation when compared to the baseline injection strategy. However, the increased injection durations at high-load conditions resulted in soot being formed late in the cycle from the post-injection where the temperatures dropped rapidly, slowing down the soot oxidation rates. This resulted in higher net soot production for the post-injection cases compared to the single long main injection cases. This temperature effect on soot emissions was enhanced, as the post-injection SOI timing was delayed, resulting in increased soot emissions with increasing dwell time. Premixing a portion of the main injection fuel reduced the soot emissions for the post-injection strategies, as the well-mixed premixed fuel combusts without forming any soot. When a similar study was repeated under low- and mid-load conditions using the validated CFD model, post-injections showed a benefit with a maximum reduction in soot of ∼62% compared to the baseline strategy. This was because, similar to the high-load conditions, the fuel from the post-injection was targeted at a different region in the combustion chamber relative to the main injection, which provided better access to the oxygen to both the main and the post-injections. However, compared to high-load conditions, since the duration of the main and the post-injection is shorter, it allowed the SOI timing of the post-injection to be advanced closer to TDC without overlapping with the main injection. The advanced post-injection timing, combined with the shorter duration of the post-injection, resulted in the fuel being delivered sufficiently early in the cycle. This provided enough residence time in the high-temperature regions to oxidize the soot formed from the post-injection completely, resulting in reduced soot emissions compared to the case without the post-injection.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,