Article ID Journal Published Year Pages File Type
663043 International Journal of Heat and Mass Transfer 2005 17 Pages PDF
Abstract

A swirling ladle shroud (SLS) is used to control flow turbulence and to improve flotation of inclusions in a two-strand tundish of a slab caster. To simulate the fluid flow in a swirling flow three turbulence models, k–ε, k–ω and RSM were employed. Using the mixing kinetics of a tracer as well as Particle Image Velocimetry (PIV) determinations it was found that among these three models the model of turbulence RSM predicts with acceptable agreement the velocity fields of swirling flows experimentally measured. The SLS decreases the turbulence of the entering jet and of the complete flow field when it is compared with a conventional ladle shroud. Kinetic energy of fluid is dissipated through recirculating flows in the transversal and horizontal planes of the tundish helping to the flotation of inclusions through buoyancy, drag and inertial forces. The SLS will become in a new generation of flow control devices in continuous casters of steel.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,