Article ID Journal Published Year Pages File Type
6632785 Fuel 2016 11 Pages PDF
Abstract
The aerodynamic droplet breakup under the influence of heating and evaporation is studied numerically by solving the Navier-Stokes, energy and transport of species conservation equations; the VOF methodology is utilized in order to capture the liquid-air interphase. The conditions examined refer to an n-decane droplet with Weber numbers in the range 15-90 and gas phase temperatures in the range 600-1000 K at atmospheric pressure. To assess the effect of heating, the same cases are also examined under isothermal conditions and assuming constant physical properties of the liquid and surrounding air. Under non-isothermal conditions, the surface tension coefficient decreases due to the droplet heat-up and promotes breakup. This is more evident for the cases of lower Weber number and higher gas phase temperature. The present results are also compared against previously published ones for a more volatile n-heptane droplet and reveal that fuels with a lower volatility are more prone to breakup. A 0-D model accounting for the temporal variation of the heat/mass transfer numbers is proposed, able to predict with sufficient accuracy the thermal behavior of the deformed droplet.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,