Article ID Journal Published Year Pages File Type
6633535 Fuel 2016 10 Pages PDF
Abstract
A commercial-scale biomass fast pyrolysis plant, based on downdraft circulating fluidized bed technology with biomass throughput of 1-3 T h−1, has been developed for bio-oil production and its performance has been investigated. The technological process consists of six parts: a feeding system, a heat carrier system, a reactor system, a cyclone system, a condensation system and a carbon separating system. The plant has four circulation systems: circulation of a heat carrier, quenching materials (bio-oil), cooling water and non-condensable gas. The bio-oil, raw material (rice husks), char and non-condensable gas samples were analyzed using GC-MS, FTIR, and SEM to characterize the physical properties and chemical composition. Results showed that the operation of the plant was stable. At 550 °C, the highest yield of bio-oil obtained was 48.1 wt% with char, and non-condensable gas yields of 26.0 wt% and 25.9 wt%, respectively. GC-MS results revealed that the composition of the bio-oil was complicated and the most abundant compound category was phenolics (14.92%). The char had complex pore structure by SEM analysis, which can be collected as a resources for further comprehensive utilization.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,