Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6634314 | Fuel | 2016 | 7 Pages |
Abstract
For the fixed-bed reactor configuration in the sorption-enhanced steam reforming process (SERP), solid mixture of catalyst and sorbent is stationary and alternatively exposed to reaction and regeneration conditions for multi-cycles by periodically switching the feed gases for enhanced hydrogen production with in-situ CO2 removal. A NiO/NiAl2O4 catalyst was synthesized by the co-precipitation method with rising pH technique and the crystalline spinel phase of NiAl2O4 was formed under the calcination temperature of 900 °C. The catalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), thermo-gravimetric analysis (TGA), and N2 adsorption-desorption. The non-stoichiometric thermodynamic calculation was carried out to determine the effects of temperature and in-situ CO2 removal on the enhancement of hydrogen production by SERP from glycerol at 425-700 °C. The multi-cycles on reaction and regeneration for hydrogen production by SERP from glycerol were performed by NiO/NiAl2O4 catalyst and CaO based sorbent in a fixed-bed reactor. The results showed that hydrogen production by SERP can be clearly divided into three periods, and the experimental gaseous products were compared with non-stoichiometric thermodynamic calculations. It is obvious that H2 purity was greatly increased, and CO2, CO and CH4 concentrations were reduced by in-situ CO2 removal during the pre-breakthrough period. It is found that enhanced hydrogen production was mainly depended on in-situ CO2 removal. The operation durations for producing high-purity hydrogen of more than 90% were decreased with the increase of the cycles. It may due to the decrease in the reactivity of CaO based sorbent after multi-cycles reaction and regeneration.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Binlin Dou, Bo Jiang, Yongchen Song, Chuan Zhang, Chao Wang, Haisheng Chen, Baoguo Du, Yujie Xu,