Article ID Journal Published Year Pages File Type
663555 International Journal of Heat and Mass Transfer 2005 10 Pages PDF
Abstract

In the present paper, critical heat flux (CHF) experiments for flow boiling of R-134a were performed to investigate the CHF characteristics of four-head and six-head rifled tubes in comparison with a smooth tube. Both of rifled tubes having different head geometry have the maximum inner diameter of 17.04 mm while the smooth tube has the average inner diameter of 17.04 mm. The experiments were conducted for the vertical orientation under outlet pressures of 13, 16.5, and 23.9 bar, mass fluxes of 285–1300 kg/m2s and inlet subcooling temperatures of 5–40 °C in the R-134a CHF test loop. The parametric trends of CHF for the tubes show a good agreement with previous understanding. In particular, CHF data of the smooth tube for R-134a were compared with well-known CHF correlations such as Bowring and Katto correlations. The CHF in the rifled tube was enhanced to 40–60% for the CHF in the smooth tube with depending on the rifled geometry and flow parameters such as pressure and mass flux. In relation to the enhancement mechanism, the relative vapor velocity is used to explain the characteristics of the CHF performance in the rifled tube.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,