Article ID Journal Published Year Pages File Type
664253 International Journal of Heat and Mass Transfer 2000 16 Pages PDF
Abstract

We consider nonlinear heat conduction satisfying a variational principle of Fermat type in the case of stationary heat flow. We review origins of a physical theory and transform it into a formalism consistent with irreversible thermodynamics, where the theory emerges as a consequence of the theorem of minimum entropy production. Applications of functional equations and the Hamilton–Bellman–Jacobi equation are effective when Bellman’s method of dynamic programming is applied to propagation of thermal rays. Potential functions describing minimum resistance are obtained by analytical and numerical methods. For the latter, approximation schemes are developed. Differences between propagation of thermal and optical rays are discussed and it is shown that while simplest optical rays can be described by Riemmanian geometry, it is rather Finslerian geometry that is valid for thermal rays.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,