Article ID Journal Published Year Pages File Type
6656509 Fuel Processing Technology 2018 9 Pages PDF
Abstract
We have developed a pyrolysis reactor based on a unique auger-paddle configuration with heat transfer material (HTM) and proved to achieve high heating rates and fast pyrolysis. We tested ten different biomass types and obtained bio-oil yields ranging from approximately 40% for thermally treated wood, to approximately 57% for crop residues (corn stover) and 67% yield for woody feedstocks (tulip poplar). These results, as well as the solid char yields, are similar to those obtained for the same feedstock using a circulating fluidized bed. Tests conducted without HTM resulted in lower bio-oil yields (ranging from 8 to 18% decrease in yield) and higher char yields with similar changes in magnitude, which is indicative of slow pyrolysis. In addition, a comprehensive study and analysis of the material residence time and mixing characteristics of the novel auger-paddle system is presented. These results demonstrate that an auger-paddle configuration is capable of achieving the high heating rates required for fast pyrolysis.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,