Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6657382 | Fuel Processing Technology | 2013 | 8 Pages |
Abstract
In this work, a novel in-situ synthesis route was applied for preparation of an adsorbent, i.e. palladium containing MCM-41. At first, a hydrophobic palladium precursor was added to the ethanolic micellar solution followed by vacuum distillation of ethanol which decreases the hydrophobic characteristic of the solution. Distillation caused diffusion of hydrophobic palladium precursor into the hydrophobic core of the micelles. Then, tetraethyl orthosilicate was added to the above solution and the silicate spices arranged around the palladium containing micelles. The XRD, N2 physisorption and TEM studies revealed that 4 wt.% palladium loading was achieved without considerable loss of pore ordering. H2-TPR showed that the palladium nanoparticles were accessible for hydrogen molecules. Adsorptive desulfurization of low sulfur diesel fuel was then investigated using synthesized samples. The effect of three valuable parameters, i.e., temperature (25, 75, 150 and 200 °C), concentration of palladium (2, 4 and 5 wt.%) and feed flow rate (0.3 and 1 mL/min) were tested using a fixed-bed flowing device. The highest sulfur break through adsorption capacity and total sulfur adsorption capacity obtained at 200 °C, 0.3 mL/min of feed flow rate and 4 wt.% of palladium concentration were 1.67 and 2.35 mg sulfur/g adsorbent, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Mohammad Teymouri, Abdolraouf Samadi-Maybodi, Amir Vahid, Aliakbar Miranbeigi,