Article ID Journal Published Year Pages File Type
66686 Journal of Molecular Catalysis A: Chemical 2010 6 Pages PDF
Abstract

A mixture of Co(salen) macrocycles, prepared via the ring expansion metathesis oligomerization of salen-functionalized cyclooctene monomers, among the most active soluble catalysts for the hydrolytic kinetic resolution (HKR) of terminal epoxides, is exploited as the catalyst in the ring-opening of epoxides using aliphatic alcohols or phenols as nucleophiles, leading to the direct synthesis of optically active α-aryloxy alcohols or α-alkoxy alcohols. The catalyst is compared to other dimeric, oligomeric and monomeric Co(salen) complexes including a pimelate-linked macrocyclic Co(salen) catalyst and a dimeric Co(salen) catalyst referred to as a bisalen. The catalysts that contain multiple Co(salen) units within a single molecular framework allow for substantial decreases in catalyst loading compared with the monomeric catalyst. The cyclooctene-based Co(salen) macrocycle catalyst allows for good activity and enantioselectivity in the ring-opening of terminal epoxides with phenols as nucleophiles, giving enhanced turnover frequencies relative to many literature catalysts. The cyclooctene-based Co(salen) macrocycle catalyst and the bisalen catalysts are shown to be the most active in the asymmetric ring-opening of (±)1,2-epoxyhexane with methanol, out-performing the other catalysts tested. The Co(salen) macrocycle catalyst is recycled 3 times in this reaction with some loss in activity but no noteworthy change in selectivity.

Graphical abstractA mixture of Co(salen) macrocycles exhibits excellent catalytic properties in the ring-opening of epoxides using alcohols or phenols, leading to the direct synthesis of optically active α-aryloxy or α-alkoxy alcohols.Figure optionsDownload full-size imageDownload high-quality image (128 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,