Article ID Journal Published Year Pages File Type
6669915 Journal of Saudi Chemical Society 2018 10 Pages PDF
Abstract
The adsorption kinetics for removal of uranium (V1) from aqueous solution using silicon dioxide nanopowder (nano-SiO2) was investigated in batch and continuous techniques. Pseudo-first order and pseudo-second order were used to analyze the kinetics of batch experiments. In continuous technique the important parameters (initial concentration, flow rate and bed height) on the breakthrough curves were studied and the adsorption kinetics was analyzed using Thomas and Yoon and Nelson kinetic models. The comparison between the kinetic models was evaluated by the correlation coefficients (r2). The results indicated that the batch experiments fitted well with pseudo second-order kinetic model. The comparison of the experimental breakthrough curve to the breakthrough profile obtained from Thomas and Yoon and Nelson methods showed a satisfactory fit for silicon dioxide nanopowder.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,