Article ID Journal Published Year Pages File Type
667028 International Journal of Multiphase Flow 2006 20 Pages PDF
Abstract

Several Continuous Random Walk (CRW) models were constructed to predict turbulent particle diffusion based on Eulerian statistics that can be obtained with Reynolds-Averaged Navier Stokes (RANS) solutions. The test conditions included a wide range of particle inertias (Stokes numbers) with a near-wall injection (y+ = 4) in a turbulent boundary layer that is strongly anisotropic and inhomogeneous. To assess the performance of the models, the CRW results were compared to particle diffusion statistics gathered from a Direct Numerical Simulation (DNS). In particular, comparisons were made with transverse concentration profiles, root-mean-square of particle trajectory coordinates, and mean transverse particle velocity away from the wall.The results showed that accurate simulation required a modified (non-dimensionalized) Markov chain to handle the large gradients in turbulence near the wall as shown by simulations with fluid-tracer particles. For finite-inertia particles, an incremental drift correction for the Markov chain developed herein to account for Stokes number effects was critical to avoiding non-physical particle collection in low-turbulence regions. In both cases, inclusion of anisotropy in the turbulence model was found to be important, but the influence of off-diagonal terms was found to be weak. The results were generally good, especially for long-time and large inertia particles.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,