Article ID Journal Published Year Pages File Type
667129 International Journal of Multiphase Flow 2006 17 Pages PDF
Abstract

The adiabatic two-phase frictional multipliers for SUVA, R-134a flowing in a rectangular duct (with DH = 4.8 mm) have been measured for three nominal system pressures (0.9 MPa, Tsat = 35.5 °C; 1.38 MPa, Tsat = 51.8 °C; and 2.41 MPa, Tsat = 75.9 °C) and three nominal mass fluxes (510, 1020 and 2040 kg/m2/s). The data is compared with several classical correlations to assess their predictive capabilities. The Lockhart–Martinelli model gives reasonable results at the lowest pressure and mass flux, near the operating range of most refrigeration systems, but gives increasingly poor comparisons as the pressure and mass flux are increased. The Chisholm B-coefficient model is found to best predict the data over the entire range of test conditions; however, there is significant disagreement at the highest pressure tested (with the model over predicting the data upwards of 100% for some cases). The data shows an increased tendency toward homogeneous flow as the pressure and flow rate are increased, and in fact the homogeneous model best predicts the bulk of the data at the highest pressure tested.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,