Article ID Journal Published Year Pages File Type
667173 International Journal of Multiphase Flow 2015 13 Pages PDF
Abstract
The present paper shows the importance of the resolution of large unsteady flow structures in numerical simulations of cavitating flows. Three-dimensional simulations of the flow through a throttle geometry representative for fuel injectors have been performed to characterise the inception and development of cavitation, adopting the implicit Large Eddy Simulation approach. The two-phase flow has been handled by the Volume of Fluid method; whilst the simplified Rayleigh equation has been adopted to handle bubble dynamics. The mathematical model has been solved in the open source C++ toolbox OpenFOAM 2.0.1. Results obtained with the mathematical model are compared with those from RANS-based simulations and validated against experimental measurements. The performed Large Eddy Simulations not only are able to reproduce vortex cavitation, but also give further insight into the complex interaction between cavitation and turbulence through the assessment of the different terms of the vorticity equation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,