Article ID Journal Published Year Pages File Type
6673513 Minerals Engineering 2013 10 Pages PDF
Abstract
This is the first step in establishing a geometallurgical program for the Malmberget iron ore deposit, northern Sweden. Geometallurgy captures geological and metallurgical (processing) information into a spatially-based predictive model of mineral processing characteristics. This paper describes the development of a practical, fast and inexpensive technique to quantify minerals from routine chemical assays. Ore samples and process samples from two different orebodies were used in the process of developing this element to mineral conversion technique that involved electron microprobe (EPMA), X-ray fluorescence (XRF) and SATMAGAN analyses. The method was validated against QEMSCAN analyses. From the calculated modal mineralogy an ore classification system was established based on the iron mineralogy, iron mineral grades and gangue mineralogy to create a preliminary geological/geometallurgical model of the ore. However, in a geometallurgical context the modal composition is not sufficient and the geological model requires information on mineral textures, too.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,