Article ID Journal Published Year Pages File Type
667685 International Journal of Multiphase Flow 2007 17 Pages PDF
Abstract
The continuum equations for a dilute particle distribution in inhomogeneous turbulence are tested against results from a Langevin particle tracking simulation. Reeks' version of the kinetic theory is used to generate the mass, momentum and kinetic stress equations for the particle distribution. The particle tracking data are used to directly evaluate the dispersion tensors λ and μ which serve as closure relations for the continuum equations. These exact forms are compared to approximate, local forms. Even for low Stokes numbers (corresponding to low particle inertia defined by τ/τp ≫ 1), the tensor λ is strongly affected by the inhomogeneity and depends on turbulence parameters in the volume corresponding to the particle path dispersion over the particle Lagrangian integral timescale τ. In contrast, the locally homogeneous form of the velocity dispersion tensor μ is a sufficient approximation, since it depends on the dispersion volume over the much smaller particle relaxation time τp. It is demonstrated that the body force due to the dispersion vector γ cannot be neglected. In the limit of passive tracers (zero stopping distance), γ is equal to the gradient of λ, if the physical setting is such that we can invoke constant tracer density in this limit.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,