Article ID Journal Published Year Pages File Type
6679216 Proceedings of the Combustion Institute 2015 28 Pages PDF
Abstract
To achieve the benefits projected by emerging engine technologies, the properties of petroleum-derived fuels themselves must be modified over time, but the effects of blending candidate alternative fuels with these conventional fuels must also be understood. Predicting the coupled physical and chemical property effects of real fuels on energy conversion system performance and emissions is a daunting problem, even for petroleum-derived real fuels, since each is composed of several hundred to thousands of individual chemical species typically belonging to one of a few organic classes (e.g., n-paraffins, iso-paraffins, cyclo-paraffins, olefins, aromatics). For specific combustion applications, it is often the global combustion response to variations in the composition of fuel mixtures - inclusive of those occurring by blending petroleum-derived fuel with alternative fuel candidates - that is of interest for fuel property optimization. This paper presents an overview of tools used for evaluating and emulating combustion-relevant properties of real fuels and alternative fuel candidates. New analytical and statistical methods can provide important insights as to how the ensembles of distinct molecular structures found in a given fuel mixture contribute to the physical and chemical kinetic properties that govern its combustion in energy conversion processes. Such tools can in turn assist in screening candidate alternative fuels for more detailed study.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,