Article ID Journal Published Year Pages File Type
6679410 Proceedings of the Combustion Institute 2009 8 Pages PDF
Abstract
The autoignition of a series of C4 to C8 fatty acid methyl esters has been studied in a rapid compression machine in the low and intermediate temperature region (650-850 K) and at increasing pressures (4-20 bar). Methyl hexanoate was selected for a full investigation of the autoignition phenomenology, including the identification and determination of the intermediate products of low temperature oxidation. The oxidation scheme and overall reactivity of methyl hexanoate has been examined and compared to the reactivity of C4 to C7n-alkanes in the same experimental conditions to evaluate the impact of the ester function on the reactivity of the n-alkyl chain. The low temperature reactivity leading to the first stage of autoignition is similar to n-heptane. However, the negative temperature coefficient region is located at lower temperature than in the case of the n-alkanes of corresponding reactivity. An evaluation of the distribution of esteralkyl radicals R and esteralkylperoxy radicals ROO gives an insight into the main reaction pathways.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,