Article ID Journal Published Year Pages File Type
6679444 Proceedings of the Combustion Institute 2009 8 Pages PDF
Abstract
The Method of Invariant Grid (MIG) is a model reduction technique based on the concept of slow invariant manifold (SIM). The MIG approximates the SIM by a set of nodes in the concentration space (invariant grid). In the present work, the MIG is applied to a realistic combustion system: an adiabatic constant volume reactor with H2-air at stoichiometric proportions. By considering the thermodynamic Lyapunov function of the detailed kinetic system, the notion of the quasi-equilibrium manifold (QEM) is adopted as an initial approximation to the SIM. One- and two-dimensional discrete approximations of the QEM (quasi-equilibrium grids) are constructed and refined via MIG to obtain the corresponding invariant grids. The invariant grids are tabulated and used to integrate the reduced system. Excellent agreement between the reduced and detailed kinetics is demonstrated.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,