Article ID Journal Published Year Pages File Type
6679482 Proceedings of the Combustion Institute 2009 8 Pages PDF
Abstract
Rotational coherent anti-Stokes Raman spectroscopy (CARS) has over the years demonstrated its strong potential to measure temperature and relative concentrations of major species in combustion. A recent work is the development and experimental validation of a CO2 model for thermometry, in addition to our previous rotational CARS models for other molecules. In the present work, additional calibration measurements for relative CO2/N2 concentrations have been made in the temperature range 294-1246 K in standardized CO2/N2 mixtures. Following these calibration measurements, rotational CARS measurements were performed in a laminar CO/air diffusion flame stabilized on a Wolfhard-Parker burner. High-quality spectra were recorded from the fuel-rich region to the surrounding hot air in a lateral cross section of the flame. The spectra were evaluated to obtain simultaneous profiles of temperature and concentrations of all major species; N2, O2, CO, and CO2. The potential for rotational CARS as a multi-species detection technique is discussed in relation to corresponding strategies for vibrational CARS.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,