Article ID Journal Published Year Pages File Type
668980 International Journal of Thermal Sciences 2010 9 Pages PDF
Abstract

Optimizing heat transfer for internal combustion engines requires application of advanced development tools. In addition to experimental method, numerical 3D-CFD calculations are needed in order to obtain an insight into the complex phenomenas in-cylinder processes. In this context, fluid flow and heat transfer inside a four-valve engine cylinder is modeled and effects of changing engine speed on dimensionless parameters, instantaneous local Nusselt number and Reynolds number near the surface of combustion chamber are studied. Based on the numerical simulation new correlations for instantaneous local heat transfer on the combustion chamber of SI engines are derived. Results for several engine speeds are compared for total heat transfer coefficient of the cylinder engine with available correlation proposed by experimental measurements and a close agreement is observed. It is found that the local value of heat transfer coefficient varies considerably in different parts of the cylinder, but it has equivalent trend with crank angle position.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,