Article ID Journal Published Year Pages File Type
669160 International Journal of Thermal Sciences 2011 11 Pages PDF
Abstract
Development of relationships for the particle concentration and convection velocity profile has been obtained by the adaptation of the surface renewal model to the particle continuity and momentum equations of the turbulence boundary-layer flow in the presence of thermal field [1]. The predictions obtained on the basis of this model for nonisothermal deposition velocity of particles have been found to be in good agreement with the experimental measurements for fully-developed turbulence tube flow conditions. The aim of this work is to extend the previous model for an applied electric field, with the inclusion of the effect of Coulombic force in addition to the Brownian and turbulent diffusion, the eddy impaction, the turbophoresis, and the thermophoresis. The calculations show an interaction between thermophoresis and turbophoresis in the presence of an applied electric field. The effect of electric force in nonisothermal flows can have a dramatic effect on thermophoretic deposition for τp+<0.02, where turbophoretic effect has ceased. The effect of axial pressure gradient is also included.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,