Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
669218 | International Journal of Thermal Sciences | 2010 | 9 Pages |
The present article numerically optimizes the thermal performance of a rotary heat exchanger (RHEx) where its internal structure is modeled as a porous medium. The objective is to maximize the RHEx's heat transfer rate per unit of frontal surface area (q″). The flow velocity through the porous matrix respects Darcy's law. Two thermal conditions between the solid matrix and the fluid are considered: (i) local thermal equilibrium – LTE and (ii), non-local thermal equilibrium – NLTE. The numerical calculations, which are implemented using a finite volume formulation, allow us to optimize two design variables, the length L of the heat exchanger and the porosity φ. The numerical results show that the figure of merit is substantially affected by both design variables and that optimal values of L and φ can be obtained. The numerical experiments also show that the optimum porosity is not a function of the pressure difference driving the flow across the RHEx. The study ends by addressing the effects of the porosity distribution and differential periods between the hot and cold sides of RHEx on the figure of merit. The numerical results are supported by a scale analysis.