Article ID Journal Published Year Pages File Type
669313 International Journal of Thermal Sciences 2009 14 Pages PDF
Abstract

This work illustrates the optimization of thermoacoustic systems, while taking into account thermal losses to the surroundings that are typically disregarded. A simple thermoacoustic engine is used as an example for the methodology. Its driving component, the thermoacoustic regenerator (also referred to as the stack), is modeled with a finite element method and its dimensions are varied to find an optimal design with regard to thermal losses. Thermoacoustic phenomena are included by considering acoustic power, and viscous and capacitive losses that are characteristic for the regenerator. The optimization considers four weighted objectives and is conducted with the Nelder–Mead Simplex method. When trying to minimize thermal losses, the presented results show that the regenerator should be designed to be as short as possible. It was found that there is an optimal regenerator diameter for a given length. The results are presented for a variety of materials and weights for each objective.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,