Article ID Journal Published Year Pages File Type
669370 International Journal of Thermal Sciences 2007 16 Pages PDF
Abstract
Turbulent flow of water in an 1 mm long and 0.4 mm high gap of an emulsifier is investigated experimentally using micro-PIV technique and compared with numerical predictions. The purpose of the investigations is to develop a procedure for well-controlled generation of mono-disperse suspension of micro-droplets. The micro-flow measurements are based on epi-fluorescence illumination and high-speed imaging. The experimental data are compared with the numerical results obtained using direct simulation and turbulent flow model. From the turbulent modelling (k−ε) it was found that, the maximum of turbulent energy dissipation rate takes place mainly in the micro-channel gap. However, measured and directly simulated (DNS) velocity fields indicate that flow turbulization is delayed and develops shortly behind the gap. Experimental and numerical results are used to predict droplet dimension of two different oil emulsions. Very low amount of oil-phase fraction in investigated emulsions justifies us to use flow characteristics evaluated for pure water to predict mean diameter of oil droplets. These predictions are validated using experimental data on statistics of droplets size.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,