Article ID Journal Published Year Pages File Type
6695101 Archives of Civil and Mechanical Engineering 2017 11 Pages PDF
Abstract
Studies of haemocompatibility of AISI 316LVM steel point to the need for nickel elimination from the surface and replacing it with other elements showing higher biotolerance. Such layers include titanium, carbon or silicon coatings. Therefore, the authors attempted to evaluate some selected physicochemical properties of TiO2 layers, grown by atomic layer deposition (ALD) method, on the surface of 316LVM steel at variable process temperature. ALD temperature has a major role in the final quality of the surface layer grown with the use of such method, regardless of the type of the base. It was observed that the growth of temperature had an adverse influence on corrosive resistance in the artificial plasma environment and contributed to formation of a double (porous) layer showing decreased tightness. Further on, assessment of the coating adhesion to the base showed that too low process temperature T = 100 °C had an adverse effect on mechanical properties, resulting in substantially reduced critical force. On the other hand, the performed surface wettability tests showed no influence of ALD temperature in the obtained angle values.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , , ,