Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
669574 | International Journal of Thermal Sciences | 2009 | 6 Pages |
This work is focused on the study of combined heat and mass transfer by natural convection of a micropolar, viscous and heat generating or absorbing fluid flow near a continuously moving vertical permeable infinitely long surface in the presence of a first-order chemical reaction. The governing equations for this investigation are formulated and solved numerically using the fourth-order Runge–Kutta method. Comparisons with previously published work on special cases of the problem are performed and found to be in excellent agreement. A parametric study illustrating the influence of the micro-gyration parameter, vortex viscosity parameter, chemical reaction parameter, Schmidt number, heat generation or absorption parameter on the fluid velocity as well as the skin-friction coefficient and the Nusselt and Sherwood numbers is conducted. The results of this parametric study are shown graphically and the physical aspects of the problem are highlighted and discussed.