Article ID Journal Published Year Pages File Type
669603 International Journal of Thermal Sciences 2009 9 Pages PDF
Abstract

A numerical model is presented for studying turbulent film condensation in the presence of non-condensable gases over a horizontal tube. Inertia, pressure gradient are included in this analysis, and the influence of turbulence in the proposed two-phase model is considered. The numerical results demonstrate that a very small bulk concentration of non-condensable gas reduces the heat transfer coefficient and film thickness considerably. The local heat flux and film thickness increase as tube surface temperature decreases at any bulk concentration of non-condensable gas. Moreover, inlet velocity increases as film thickness decreases and heat flux increases, a numerical result in agreement with that obtained by Nusselt. Numerical results indicate that average dimensionless heat transfer coefficients are in good agreement with theoretical and experimental data.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,