Article ID Journal Published Year Pages File Type
6696694 Building and Environment 2018 48 Pages PDF
Abstract
In this paper, we present a new human simulator methodology for indoor environmental research, combining three tools to predict thermal sensation, namely, a thermal manikin, a thermoregulation model, and a thermal sensation model. Thanks to the thermoregulation model's control, the thermal manikin is capable of mimicking the thermo-physiological response of a human exposed to chosen environmental conditions, which provides reliable input data for advanced thermal sensation models. Along with presenting this concept, the performance of a commercially available human simulator was demonstrated on five validation examples representing office-like conditions for which thermal sensation was predicted with satisfactory accuracy. Based on the presented results, we discussed the capabilities and limitations of human simulators for indoor environment research such as the benefits of performing measurements directly in the assessed environment with real garments, and the challenges related to the manikin's accuracy. The presented human simulator approach is suitable to apply in the building's design process, as well as the development of new solutions for conditioning indoor spaces, and can support the evaluation of existing buildings.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,