Article ID Journal Published Year Pages File Type
669693 International Journal of Thermal Sciences 2009 11 Pages PDF
Abstract
An experimental investigation was performed to study the heat transfer performance of a 36 nm-Al2O3-particle-water nanofluid in a confined and submerged impinging jet on a flat, horizontal and circular heated surface. The tests were realized for the following ranges of the governing parameters: the nozzle diameter is 3 mm and the distance nozzle-to-heated-surface was set to 2, 5 and 10 mm; the flow Reynolds number varies from 3800 to 88 000, the Prandtl number from 5 to 10, and the particle volume fraction is ranging from 0 to 6%. Experimental data, obtained for both laminar and turbulent flow regimes, have clearly shown that, depending upon the combination of nozzle-to-heated surface distance and particle volume fraction, the use of a nanofluid can provide a heat transfer enhancement in some cases; conversely, for other combinations, an adverse effect on the convective heat transfer coefficient may occur. Within the experimental parameters used, it has been observed that highest surface heat transfer coefficients can be achieved using an intermediate nozzle-to-surface distance of 5 mm and a 2.8% particle volume fraction nanofluid. Nanofluids with high particle volume fractions, say 6% or higher, have been found not appropriate for the heat transfer enhancement purpose under the confined impinging jet configuration. On the other hand, for a very small and a large distance of nozzle-to-heated-surface, it has been observed that the nanofluid use does not provide a perceptible heat transfer enhancement and has, for some particular cases, produced a clear decrease of the convective heat transfer coefficient while compared to that obtained using distilled water.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , ,