Article ID Journal Published Year Pages File Type
670051 International Journal of Thermal Sciences 2007 7 Pages PDF
Abstract

The effect of viscous dissipation and thermal radiation on natural convection in a porous medium embedded within a vertical annular cylinder is investigated. The inner surface of the cylinder is maintained at an isothermal temperature Tw and the outer surface is maintained at ambient temperature T∞. The fluid is assumed to obey the Darcy law. Finite element method is used to solve the partial differential equations governing the fluid flow and heat transfer behavior. The study is focused to investigate the combined effect of viscous dissipation and radiation. Results are presented for different values of the viscous dissipation parameter, radiation parameter, radius ratio, aspect ratio and Rayleigh number. It is observed that the viscous dissipation parameter reduces the average Nusselt number at hot surface. However, the average Nusselt number increases at the cold surface due to increased viscous dissipation parameter.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes