Article ID Journal Published Year Pages File Type
6704179 Composite Structures 2018 17 Pages PDF
Abstract
Lock-in thermography was employed to investigate the repair efficiency of a bonded repaired aerospace composite subjected to step-wise cycling mechanical loading. The studied component (substrate) was artificially damaged with a 5 mm circular notch and subsequently repaired with a tapered bonded patch. Critical and sub-critical damage of the repaired component was monitored via thermography during 5 Hz tension-tension fatigue. The examination of the acquired thermographs enabled the identification of the patch debonding propagation as well as the quantification of the stress magnification at the patch ends and the locus of the circular notch. It was found that fatigue mechanical loading yields both thermoelastic and hysterestic phenomena with the latter being more prominent prior to the failure of the studied repaired component.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,