| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6704450 | Composite Structures | 2018 | 27 Pages |
Abstract
Micro-damage initiation and accumulation in two different Glass Fiber Reinforced -E-glass and S-glass- Laminated Composite Structures (LCS) subjected to in-plane shear stressing are monitored with Acoustic Emission (AE) and thermography methods. AE signals caused by micro-damage formation are graphed as a scatter plot of Weighted Peak Frequency (WPF) versus Partial Power 2 (PP2) features and clustered using the K-means algorithm with Bray Curtis dissimilarity function thus resulting in three different well-separated clusters. Each of these clusters corresponds to different micro damages, i.e., transverse cracks, delaminations, or fiber ruptures. It is observed that the E-glass reinforced LCS has higher numbers of AE hits. Thus, the total amount of micro-damage incurred as well as the average temperature change measured by thermography is higher for the E-glass reinforced LCS. It is shown that due to the curing induced residual tensile stress in E-glass reinforced LCS, the initial formation of delamination in E-glass reinforced LCS starts at higher load level. Under the applied shear load, a significant reduction in in-plane shear modulus is observed both for the E-glass and S-glass-reinforced LCS where the E-glass reinforced LCS shows greater reduction. The decrease in in-plane shear modulus is attributed to micro-damage accumulated in the LCS.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
C. Yilmaz, C. Akalin, I. Gunal, H. Celik, Murat Buyuk, A. Suleman, M. Yildiz,
