Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6706812 | Composite Structures | 2015 | 35 Pages |
Abstract
Core shear cracking induced by impact on sandwich panels is a critical failure mode causing severe loss of structural performance. This paper reviews previous experimental and theoretical work in the area and derives improved closed form expressions for initiation of skin rupture and core shear cracking during impact on sandwich panels with foam cores. The criterion for skin rupture is also applicable to laminates without a core. It is shown that the skin rupture load limits the achievable core shear load, and that core shear cracking can be prevented by selecting a core thickness above a certain threshold value. The criteria are successfully validated by comparison with experimental results for a range of thicknesses of skins and cores in panels with carbon/epoxy skins and a Rohacell foam core. The criterion for skin rupture is also validated for plain laminates.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Robin Olsson, Tim B. Block,