Article ID Journal Published Year Pages File Type
6712659 Construction and Building Materials 2018 12 Pages PDF
Abstract
The characterization was developed in two steps: the first one focused on the effects of different fine aggregates and admixtures for a fixed PCM content and the second one on the effect of changing the amount of PCM. Results show that using silica aggregates and antifoaming admixture outperform the other options, producing mortars with statistically significant higher thermal conductivities, diffusivities and effusivities. Besides, increasing the amount of PCM significantly reduces conductivity and diffusivity, but the effusivity is practically invariant. This suggests that the mortar design has to be defined by predominantly focusing on diffusivity, in order to achieve appropriate heat penetration rates and activation times for an efficient system operation.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,