Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6714036 | Construction and Building Materials | 2018 | 16 Pages |
Abstract
Reinforced concrete (RC) members such as beams and slabs can be strengthened in flexure by bonding fibre-reinforced polymer (FRP) composite plates to their tension face. Experimental studies have shown that anchorage of the FRP plates with anchors made from FRP (i.e. FRP anchors) can delay and even eliminate premature debonding failure. This paper reports on the finite element (FE) analysis of a series of FRP-strengthened RC test slabs anchored with FRP anchors. Prior to introducing the FE modelling strategy, a semi-empirical load-slip model is proposed for modelling the FRP anchors. The load-slip model, which is calibrated from FRP-to-concrete joint tests, is novel and is also essential for the analysis of the slabs. The numerically simulated results of load, deflection and strain for the test slabs are shown to be in good agreement with test measurements. The results help provide needed insight to the influence of FRP anchors upon FRP-strengthened members.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Jia-Qi Yang, Scott T. Smith, Zhenyu Wang, Yee Yan Lim,