Article ID Journal Published Year Pages File Type
671478 Journal of Non-Newtonian Fluid Mechanics 2008 7 Pages PDF
Abstract

Honey is a viscoelastic material which presents a crystallization phase transition at low temperatures. This phase transition limits the studies of dynamic behavior at high frequencies from the classical rheometry using time–temperature superposition (TTS). In order to characterize the viscoelastic properties of honey at high frequencies, we have developed a multiple ultrasonic reflection device (MUR). The viscoelastic properties of honey were measured by MUR and classical rheometry at high and low frequencies, respectively, between 13.1 and 31.3 °°C. Matching both results, we built the master curve over a frequency range covering nine decades, from which we determined the main rheological parameters of honey. Finally, from an inverse approach, we extracted from this master curve, the acoustical parameters for frequencies inaccessible by the ultrasonic methods.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,