Article ID Journal Published Year Pages File Type
6716033 Construction and Building Materials 2018 12 Pages PDF
Abstract
The results show that the presence of sulfate influenced the early-age reaction kinetics of the clinker phases and supplementary cementitious materials. However, even after sulfate depletion, the course of hydration and microstructures formed were significantly influenced. Increasing the sulfate level resulted in a gradual increase of the fraction of ettringite over AFm phases, coarser porosity and lower water content of the C-S-H. These microstructural changes impact the total porosity and hence cement strength in opposing ways, namely porosity is reduced with increasing ettringite fraction while the space filling capacity of the C-S-H is also reduced due to the lower water content of the C-S-H. These findings have important implications for optimizing the mechanical properties and durability of ternary blends.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,