Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6718647 | Construction and Building Materials | 2016 | 19 Pages |
Abstract
In recent years, continuum and atomistic modeling of cementitious materials has provided significant advances towards studying the durability of civil infrastructure. An important frontier to understanding structure-property relationships is the “mesoscale”, which represents the bridge between underlying (e.g. molecular) processes and bulk macroscale behavior. This review highlights examples of a mesoscale approach within biological materials and emphasizes their applicability to the study and design of sustainable cement-based materials at multiple length scales. We propose a methodology focused on the coupling of computation and experiment for furthering our understanding of the microstructural properties that control the durability of hardened cement paste.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Steven D. Palkovic, Dieter B. Brommer, Kunal Kupwade-Patil, Admir Masic, Markus J. Buehler, Oral Büyüköztürk,