Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6721807 | Construction and Building Materials | 2014 | 8 Pages |
Abstract
In order to increase energy and resources utilization efficiency, and to find hydraulic mortars with improved properties, in this paper we employed diatomite as partial replacement of natural hydraulic lime NHL2 (NHL) and masonry waste powder (MWP) as aggregate in the preparation of mortars. Diatomite was used at 0%, 10% and 20% replacement by weight for NHL2 and the mortars were designed with different water binder ratios (w/b). The physical, mechanical, and anti-aggressive properties such as freeze and thaw, and acid and sulfate resistance properties of mortars were tested after 14, 28 and 90Â days of curing. The introduction of diatomite reduced the density of mortars, and it also reduced the total amount of raw materials, especially the amount of NHL, to prepare same volume of mortars. Diatomite replacement generally enhanced the compressive and flexural strength of hydraulic mortars. The enhancement mainly happened after 14Â days of curing when pozzolanic effect was noticeable. Diatomite replacement percentage and w/b influenced porosity, compactness and strength of mortars. There existed optimal diatomite replacement percentage and w/b for mortars to attain largest strength. The introduction of diatomite improved acid and sulfate resistance of mortars greatly. All the hydraulic mortars studied in this paper can still well develop strength under freeze and thaw condition.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Shuqiang Xu, Julin Wang, Qinglin Ma, Xin Zhao, Tao Zhang,