Article ID Journal Published Year Pages File Type
6723099 Construction and Building Materials 2014 11 Pages PDF
Abstract
Porous concrete has a high void ratio with continuously interconnected void clusters. The void distribution in concrete strongly affects its physical properties, such as strength and percolation. To investigate and quantify the spatial distribution of voids inside porous concrete specimens, computed tomography (CT) images and low-order probability functions can be used. In this study, we reconstruct porous concrete specimens with different void distributions using low-order probability functions. The void distributions of the original and reconstructed porous concrete specimens should exhibit almost the same statistical characteristics. We confirm that reconstructed porous concrete specimens generated using the proposed probabilistic optimization process have statistically identical characteristics, and exhibit similar material behaviors as with the original model. These reconstructed specimens can be utilized for numerical experiments so as to reduce the number of time-consuming real experiments.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,