Article ID Journal Published Year Pages File Type
672613 Particuology 2008 8 Pages PDF
Abstract

The design of a pressurized capillary rheometer operating at prescribed temperature is described to measure the viscosity of magnetic fluids (MFs) containing Fe3O4 magnetic nanoparticles (MNPs). The equipment constant of the rheometer was obtained using liquids with predetermined viscosities. Experimentally measured viscosities were used to evaluate different equations for suspension viscosities. Deviation of measured suspension viscosities from the Einstein equation was found to be basically due to the influence of spatial distribution and aggregation of Fe3O4 MNPs. By taking account of the coating layer on MNPs and the aggregation of MNPs in MFs, a modified Einstein equation was proposed to fit the experimental data. Moreover, the influence of external magnetic field on viscosity was also taken into account. Viscosities thus predicted are in good agreement with experimental data. Temperature effect on suspension viscosity was shown experimentally to be due to the shear-thinning behavior of the MFs.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,