Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6727539 | Energy and Buildings | 2018 | 50 Pages |
Abstract
Using a case study, we demonstrate the application of Kennedy and O'Hagan's (KOH) [1] Bayesian calibration framework to an EnergyPlus whole building energy model. The case study is used to analyze the sensitivity of the posterior distributions to the number of calibration parameters. The study also looks into the influence of prior specification on the resulting (1) posterior distributions; (2) calibrated predictions; and (3) model inadequacy that is revealed by a discrepancy between the observed data and the model predictions. Results from the case study suggest that over-parameterization can result in a significant loss of posterior precision. Additionally, using strong prior information for the calibration parameters may dominate any influence from the data leading to poor posterior inference of the calibration parameters. Lastly, this study shows that it may be misleading to assume that the posteriors of the calibration parameters are representative of their true values and their associated uncertainty simply because the calibrated predictions matches the measured output well.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Adrian Chong, Kathrin Menberg,