Article ID Journal Published Year Pages File Type
6734938 Energy and Buildings 2012 7 Pages PDF
Abstract
An innovative 3-in-1 wind–solar hybrid renewable energy and rain water harvester is designed for urban high rise application. A novel power-augmentation-guide-vane (PAGV) that surrounds the Sistan rotor vertical axis wind turbine (VAWT) is introduced to guide and increase the speed of the high altitude free-stream wind for optimum wind energy extraction. The system was also designed to provide optimum surface area and orientation for solar power generation. On the top surface of the PAGV, rain water can be collected, thereby reducing the electrical power required to pump water to the upper levels of the high rise building. To minimize the visual impact, the outer design of the PAGV can be blended into the building architecture. The system is also designed to eliminate the bird-strike problem and the concern on safety, and reduce the vibration. Wind tunnel testing on the scaled down prototype shows that the PAGV improved the starting behavior and increased the rotational speed of the Sistan rotor VAWT by 73.2% at the wind speed of 3 m/s. According to the present study, with the 30 m diameter and 12 m high PAGV integrated system, the estimated annual energy generated and savings is 160 MW h.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,