Article ID Journal Published Year Pages File Type
673550 Thermochimica Acta 2014 9 Pages PDF
Abstract

•The kinetic behavior of novel photopolymerizable organic–inorganic hybrid system was studied as a function of the composition and of the atmosphere for reactions.•The UV-curing reaction of the hybrid mixture was found fast and complete.•The combined presence of thiol monomer and nanostructured silica allows to reduce the effect of inhibition of oxygen towards the radical photopolymerization.

The kinetic behavior of innovative photopolymerizable UV-cured methacrylic–silica hybrid formulations, previously developed, was studied and compared to that of a reference control system. The organic–inorganic (O–I) hybrids proposed in this study are obtained from organic precursors with a high siloxane content mixed with tetraethoxysilane (TEOS) in such a way to produce co-continuous silica nano-domains dispersed within a cross-linked organic phase, as a result of the hydrolysis and condensation reactions. The kinetics of the radical photopolymerization mechanism induced by UV-radiations, in presence of a suitable photoinitiator, was studied by calorimetric, FTIR and Raman spectroscopic analyses, by varying the composition of the mixtures and the atmosphere for reactions. The well known effect of oxygen on the kinetic mechanism of the free radical photopolymerization of the methacrylic–siloxane based monomers was found to be strongly reduced in the hybrid system, especially when a proper thiol was used. The experimental calorimetric data were fitted using a simple kinetic model for radical photopolymerization reactions, obtaining a good agreement between the experimental data and the theoretical model. From the comparison of the kinetic constants calculated for control and hybrid systems, it was possible to assess the effect of the composition, as well as of the atmosphere used during the photo-polymerization process, on the kinetic of photopolymerization reaction.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,