Article ID Journal Published Year Pages File Type
6736960 Engineering Structures 2018 14 Pages PDF
Abstract
The structural response of masonry arches is strongly dominated by the arch geometry, the stone block dimensions and the interaction with backfill material or surrounding walls. Due to their intrinsic discontinuous nature, the nonlinear structural response of these key historical structures can be efficiently modelled in the context of discrete element approaches. Smeared crack finite elements models, based on the assumption of homogenised media and spread plasticity, fail to rigorously predict the actual collapse behaviour of such structures, that are generally governed by rocking and sliding mechanisms along mortar joints between stone blocks. In this paper a new Discrete Macro-Element Method (DMEM) for predicting the nonlinear structural behaviour of masonry arches is proposed. The method is based on a macro-element discretization in which each plane element interacts with the adjacent elements through zero-thickness interfaces and whose internal deformability is related to a single degree of freedom only. Both experimental and numerical validations show the capability of the proposed approach to be applied for the prediction of the non-linear response of masonry arch structures under different loading conditions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , ,