Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6740529 | Engineering Structures | 2015 | 9 Pages |
Abstract
Winds generated by non-synoptic events such as those from tornadoes, microbursts or gust fronts, that are non-stationary or transient in nature and extreme in magnitude, can cause major damage to flexible structures. In this paper, a time-domain method is used to simulate the response of a long-span bridge subject to winds generated by a particular type of non-synoptic wind phenomenon such as a microburst to assess the vulnerability of the bridge to such winds. The self-excited or motion-induced and buffeting or turbulence-induced wind loads on the structure were modeled and simulated by Rational Functions and buffeting indicial functions, respectively. Wind from a translating microburst was simulated using empirical relationships that were derived from measurements of a laboratory-simulated microburst and the bridge response calculated to compare it with those induced by an equivalent straight-line wind that is used for structural design. It is shown that microburst induced structural vibration could be larger or smaller than the vibration induced by straight-line wind of equivalent magnitude depending on the relative size of the microburst with respect to the bridge span.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geotechnical Engineering and Engineering Geology
Authors
Bochao Cao, Partha P. Sarkar,