Article ID Journal Published Year Pages File Type
6741311 Engineering Structures 2013 14 Pages PDF
Abstract
This paper presents a new procedure to derive fragility functions for populations of buildings that relies on the displacement-based earthquake loss assessment (DBELA) methodology. The recent developments in this methodology are also presented herein, such as the development of new formulae for the calculation of the yield period or the consideration of infilled frame structures. In the fragility method proposed herein, thousands of synthetic buildings have been produced considering probabilistic distributions describing the variability in their geometrical and material properties. Then, their nonlinear capacity has been estimated using the DBELA method and their performance against a large set of ground motion records has been calculated. Global limit states are used to estimate the distribution of buildings in each damage state for different levels of ground motion, and a regression algorithm is applied to derive fragility functions for each limit state. The proposed methodology is demonstrated for the case of ductile and non-ductile Turkish reinforced concrete buildings with and without masonry infill walls, and compared with results obtained using nonlinear dynamic procedures and with the results from previous studies.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , ,