Article ID Journal Published Year Pages File Type
6742859 Fusion Engineering and Design 2018 6 Pages PDF
Abstract
The severity of electromagnetic (EM) loads produced by plasma disruptions is one of the most concerning issues for the ITER in-vessel components design. To investigate the effects of fast EM transients on plasma surrounding structures during a disruption the Secondary Excitations (SE) method is used. This is an interface procedure to couple 2D plasma equilibrium codes with Finite Elements (FE) software. The Zooming Approach (ZA) used for the analyses presented here is a particular implementation of the SE method. The aim of this work is the demonstration that the ZA can be effectively applied in case of ANSYS Maxwell 3D analyses combining the ease of use of the Maxwell code with the computational efficiency of the ZA. The work has been carried out evaluating the EM loads acting on the ITER Diagnostic Equatorial Port Plug (EPP) during major disruptions scenario and comparing these loads with those obtained in previous analyses. Additional analyses have been performed to study the effect of ferromagnetic materials on EM loads in order to investigate ANSYS Maxwell capabilities in simulating non-linear magnetic properties.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,